CAMBIO CLIMATICO

RADIO VOCES

REGRESAR A MI ESCUELA

REGRESA A VOCES POR EL PLANETA

Entradas populares

Contador

lunes, 22 de septiembre de 2008

jueves, 18 de septiembre de 2008




ESTUFA DE CONCENTRACION SOLAR








En las últimas décadas, la energía solar ha cobrado importancia como fuente energética, puesto que las reservas de combustibles fósiles no son eternas. Esto ha ocasionado que, por ejemplo, sean parecidos los precios de un calentador solar y de uno de gas, lo que no sucedía hace 60 años. Así, con respecto a los costos, los sistemas solares son cada vez más baratos, con la gran ventaja de que el combustible, la luz del Sol, aparece todas las mañanas sin cobrar.
Debe quedar claro que la energía solar no constituye ninguna panacea universal de la cual los hombres obtendrán todo lo que necesitan. La energía solar contribuye modestamente como otra posibilidad energética y no se trata de defenderla a ultranza como la única fuente de energía. Un planteamiento realista sería considerarla seriamente como una opción energética con sus deficiencias tecnológicas, sus desventajas económicas actuales y sus ventajas a largo plazo.




El núcleo del Sol tiene una temperatura de 15 millones de grados Celsius y ésta va disminuyendo hasta llegar a la superficie solar, donde la temperatura promedio es de 5 770ºC, más que suficiente para derretir un automóvil.




Según narran los antiguos historiadores, en el año 212 a. C., a petición del rey Herón, Arquímedes quemó las naves romanas que sitiaban la ciudad de Siracusa. Para llevar a cabo tal hazaña, Arquímedes utilizó varios espejos planos o tal vez escudos reflejantes que en conjunto formaban un gran espejo cóncavo, pues en esa época ya se utilizaban espejos pulidos de plata y cobre para concentrar la luz del Sol. Un espejo cóncavo sería, por ejemplo, el que tiene el faro de un automóvil. Este tipo de espejo, cuando posee la forma de un paraboloide de revolución, tiene la propiedad de que todos los rayos luminosos que inciden sobre él desde cualquier dirección se concentran en un punto: el foco del espejo. De esta forma, mediante la concentración de la energía de los rayos solares se logra alcanzar altas temperaturas y, quizá, como Arquímedes, incendiar grandes objetos. También Euclides, en sus trabajos de óptica, menciona que es posible obtener temperaturas elevadas mediante un espejo cóncavo, y Filón de Bizancio aprovechó el calor del Sol en un termoscopio (antecedente del termómetro), que consiste en un termómetro rudimentario, que indica la diferencia de temperatura sin precisar su magnitud.


ESQUEMA DE LA ESTUFA


jueves, 3 de abril de 2008


Calor





El calor es energía en tránsito; siempre fluye de una zona de mayor temperatura a una zona de menor temperatura, con lo que eleva la temperatura de la segunda y reduce la de la primera, siempre que el volumen de los cuerpos se mantenga constante. La energía no fluye desde un objeto de temperatura baja a un objeto de temperatura alta si no se realiza trabajo.

Hasta principios del siglo XIX, el efecto del calor sobre la temperatura de un cuerpo se explicaba postulando la existencia de una sustancia o forma de materia invisible, denominada calórico. Según la teoría del calórico, un cuerpo de temperatura alta contiene más calórico que otro de temperatura baja; el primero cede parte del calórico al segundo al ponerse en contacto ambos cuerpos, con lo que aumenta la temperatura de dicho cuerpo y disminuye la suya propia. Aunque la teoría del calórico explicaba algunos fenómenos de la transferencia de calor, las pruebas experimentales presentadas por el físico británico Benjamin Thompson en 1798 y por el químico británico Humphry Davy en 1799 sugerían que el calor, igual que el trabajo, corresponde a energía en tránsito (proceso de intercambio de energía). Entre 1840 y 1849, el físico británico James Prescott Joule, en una serie de experimentos muy precisos, demostró de forma concluyente que el calor es una transferencia de energía y que puede causar los mismos cambios en un cuerpo que el trabajo.


TRANSFERENCIA DE CALOR:




Se refiere al proceso por el que se intercambia energía en forma de calor entre distintos cuerpos, o entre diferentes partes de un mismo cuerpo que están a distinta temperatura. El calor se transfiere mediante convección, radiación o conducción. Aunque estos tres procesos pueden tener lugar simultáneamente, puede ocurrir que uno de los mecanismos predomine sobre los otros dos. Por ejemplo, el calor se transmite a través de la pared de una casa fundamentalmente por conducción, el agua de una cacerola situada sobre un quemador de gas se calienta en gran medida por convección, y la Tierra recibe calor del Sol casi exclusivamente por radiación.

TIPOS DE CALOR

CONDUCCIÓN:

En los sólidos, la única forma de transferencia de calor es la conducción. Si se calienta un extremo de una varilla metálica, de forma que aumente su temperatura, el calor se transmite hasta el extremo más frío por conducción. No se comprende en su totalidad el mecanismo exacto de la conducción de calor en los sólidos, pero se cree que se debe, en parte, al movimiento de los electrones libres que transportan energía cuando existe una diferencia de temperatura.
Esta teoría explica por qué los buenos conductores eléctricos también tienden a ser buenos conductores del calor. En 1822, el matemático francés Joseph Fourier dio una expresión matemática precisa que hoy se conoce como ley de Fourier de la conducción del calor. Esta ley afirma que la velocidad de conducción de calor a través de un cuerpo por unidad de sección transversal es proporcional al gradiente de temperatura que existe en el cuerpo (con el signo cambiado).
El factor de proporcionalidad se denomina conductividad térmica del material. Los materiales como el oro, la plata o el cobre tienen conductividades térmicas elevadas y conducen bien el calor, mientras que materiales como el vidrio o el amianto tienen conductividades cientos e incluso miles de veces menores; conducen muy mal el calor, y se conocen como aislantes. En ingeniería resulta necesario conocer la velocidad de conducción del calor a través de un sólido en el que existe una diferencia de temperatura conocida. Para averiguarlo se requieren técnicas matemáticas muy complejas, sobre todo si el proceso varía con el tiempo; en este caso, se habla de conducción térmica transitoria. Con la ayuda de ordenadores (computadoras) analógicos y digitales, estos problemas pueden resolverse en la actualidad incluso para cuerpos de geometría complicada.


CONVECCIÓN:

Si existe una diferencia de temperatura en el interior de un líquido o un gas, es casi seguro que se producirá un movimiento del fluido. Este movimiento transfiere calor de una parte del fluido a otra por un proceso llamado convección. El movimiento del fluido puede ser natural o forzado. Si se calienta un líquido o un gas, su densidad (masa por unidad de volumen) suele disminuir. Si el líquido o gas se encuentra en el campo gravitatorio, el fluido más caliente y menos denso asciende, mientras que el fluido más frío y más denso desciende. Este tipo de movimiento, debido exclusivamente a la no uniformidad de la temperatura del fluido, se denomina convección natural. La convección forzada se logra sometiendo el fluido a un gradiente de presiones, con lo que se fuerza su movimiento de acuerdo a las leyes de la mecánica de fluidos.
Supongamos, por ejemplo, que calentamos desde abajo una cacerola llena de agua. El líquido más próximo al fondo se calienta por el calor que se ha transmitido por conducción a través de la cacerola. Al expandirse, su densidad disminuye y como resultado de ello el agua caliente asciende y parte del fluido más frío baja hacia el fondo, con lo que se inicia un movimiento de circulación. El líquido más frío vuelve a calentarse por conducción, mientras que el líquido más caliente situado arriba pierde parte de su calor por radiación y lo cede al aire situado por encima. De forma similar, en una cámara vertical llena de gas, como la cámara de aire situada entre los dos paneles de una ventana con doble vidrio, el aire situado junto al panel exterior —que está más frío— desciende, mientras que al aire cercano al panel interior —más caliente— asciende, lo que produce un movimiento de circulación.
El calentamiento de una habitación mediante un radiador no depende tanto de la radiación como de las corrientes naturales de convección, que hacen que el aire caliente suba hacia el techo y el aire frío del resto de la habitación se dirija hacia el radiador. Debido a que el aire caliente tiende a subir y el aire frío a bajar, los radiadores deben colocarse cerca del suelo (y los aparatos de aire acondicionado cerca del techo) para que la eficiencia sea máxima. De la misma forma, la convección natural es responsable de la ascensión del agua caliente y el vapor en las calderas de convección natural, y del tiro de las chimeneas. La convección también determina el movimiento de las grandes masas de aire sobre la superficie terrestre, la acción de los vientos, la formación de nubes, las corrientes oceánicas y la transferencia de calor desde el interior del Sol hasta su superficie.

RADIACIÓN:

La radiación presenta una diferencia fundamental respecto a la conducción y la convección: las sustancias que intercambian calor no tienen que estar en contacto, sino que pueden estar separadas por un vacío. La radiación es un término que se aplica genéricamente a toda clase de fenómenos relacionados con ondas electromagnéticas (véase Radiación electromagnética). Algunos fenómenos de la radiación pueden describirse mediante la teoría de ondas (véase Movimiento ondulatorio), pero la única explicación general satisfactoria de la radiación electromagnética es la teoría cuántica. En 1905, Albert Einstein sugirió que la radiación presenta a veces un comportamiento cuantizado: en el efecto fotoeléctrico, la radiación se comporta como minúsculos proyectiles llamados fotones y no como ondas. La naturaleza cuántica de la energía radiante se había postulado antes de la aparición del artículo de Einstein, y en 1900 el físico alemán Max Planck empleó la teoría cuántica y el formalismo matemático de la mecánica estadística para derivar una ley fundamental de la radiación. La expresión matemática de esta ley, llamada distribución de Planck, relaciona la intensidad de la energía radiante que emite un cuerpo en una longitud de onda determinada con la temperatura del cuerpo. Para cada temperatura y cada longitud de onda existe un máximo de energía radiante. Sólo un cuerpo ideal (cuerpo negro) emite radiación ajustándose exactamente a la ley de Planck. Los cuerpos reales emiten con una intensidad algo menor. La contribución de todas las longitudes de onda a la energía radiante emitida se denomina poder emisor del cuerpo, y corresponde a la cantidad de energía emitida por unidad de superficie del cuerpo y por unidad de tiempo.

Como puede demostrarse a partir de la ley de Planck, el poder emisor de una superficie es proporcional a la cuarta potencia de su temperatura absoluta. El factor de proporcionalidad se denomina constante de Stefan-Boltzmann en honor a dos físicos austriacos, Joseph Stefan y Ludwig Boltzmann que, en 1879 y 1884 respectivamente, descubrieron esta proporcionalidad entre el poder emisor y la temperatura. Según la ley de Planck, todas las sustancias emiten energía radiante sólo por tener una temperatura superior al cero absoluto. Cuanto mayor es la temperatura, mayor es la cantidad de energía emitida.
Además de emitir radiación, todas las sustancias son capaces de absorberla. Por eso, aunque un cubito de hielo emite energía radiante de forma continua, se funde si se ilumina con una lámpara incandescente porque absorbe una cantidad de calor mayor de la que emite.
Las superficies opacas pueden absorber o reflejar la radiación incidente. Generalmente, las superficies mates y rugosas absorben más calor que las superficies brillantes y pulidas, y las superficies brillantes reflejan más energía radiante que las superficies mates. Además, las sustancias que absorben mucha radiación también son buenos emisores; las que reflejan mucha radiación y absorben poco son malos emisores. Por eso, los utensilios de cocina suelen tener fondos mates para una buena absorción y paredes pulidas para una emisión mínima, con lo que maximizan la transferencia total de calor al contenido de la cazuela.
Algunas sustancias, entre ellas muchos gases y el vidrio, son capaces de transmitir grandes cantidades de radiación. Se observa experimentalmente que las propiedades de absorción, reflexión y transmisión de una sustancia dependen de la longitud de onda de la radiación incidente. El vidrio, por ejemplo, transmite grandes cantidades de radiación ultravioleta, de baja longitud de onda, pero es un mal transmisor de los rayos infrarrojos, de alta longitud de onda. Una consecuencia de la distribución de Planck es que la longitud de onda a la que un cuerpo emite la cantidad máxima de energía radiante disminuye con la temperatura. La ley de desplazamiento de Wien, llamada así en honor al físico alemán Wilhelm Wien, es una expresión matemática de esta observación, y afirma que la longitud de onda que corresponde a la máxima energía, multiplicada por la temperatura absoluta del cuerpo, es igual a una constante, 2.878 micrómetros-Kelvin. Este hecho, junto con las propiedades de transmisión del vidrio antes mencionadas, explica el calentamiento de los invernaderos. La energía radiante del Sol, máxima en las longitudes de onda visibles, se transmite a través del vidrio y entra en el invernadero. En cambio, la energía emitida por los cuerpos del interior del invernadero, predominantemente de longitudes de onda mayores, correspondientes al infrarrojo, no se transmiten al exterior a través del vidrio. Así, aunque la temperatura del aire en el exterior del invernadero sea baja, la temperatura que hay dentro es mucho más alta porque se produce una considerable transferencia de calor neta hacia su interior. (Véase Efecto invernadero).

Además de los procesos de transmisión de calor que aumentan o disminuyen las temperaturas de los cuerpos afectados, la transmisión de calor también puede producir cambios de fase, como la fusión del hielo o la ebullición del agua. En ingeniería, los procesos de transferencia de calor suelen diseñarse de forma que aprovechen estos fenómenos. Por ejemplo, las cápsulas espaciales que regresan a la atmósfera de la Tierra a velocidades muy altas están dotadas de un escudo térmico que se funde de forma controlada en un proceso llamado ablación para impedir un sobrecalentamiento del interior de la cápsula. La mayoría del calor producido por el rozamiento con la atmósfera se emplea en fundir el escudo térmico y no en aumentar la temperatura de la cápsula.


Fuente: Encarta 2008 1993-2007 Microsoft Corporación.

miércoles, 12 de marzo de 2008


  • QUE SON LOS RECURSOS ENERGETICOS?


Conjunto de medios con los que los países del mundo intentan cubrir sus necesidades de energía. La energía es la base de la civilización industrial; sin ella, la vida moderna dejaría de existir. Durante la década de 1970, el mundo empezó a ser consciente de la vulnerabilidad de los recursos de energía. A largo plazo es posible que las prácticas de conservación de energía proporcionen el tiempo suficiente para explorar nuevas posibilidades tecnológicas. Mientras tanto el mundo seguirá siendo vulnerable a trastornos en el suministro de petróleo, que después de la II Guerra Mundial se convirtió en la principal fuente de energía.



  • ANTECEDENTES HISTÓRICOS

La leña fue la primera fuente de energía para el ser humano, y la más importante durante la mayor parte de su historia. Era muy asequible porque en muchas partes del mundo crecían grandes bosques. En los tiempos antiguos también se usaban algunas otras fuentes de energía que sólo se encontraban en zonas puntuales: asfalto, carbón y turba de depósitos superficiales, y petróleo procedente de filtraciones de yacimientos subterráneos.
La situación cambió en la edad media cuando la leña se empezó a utilizar para fabricar carbón vegetal, que se empleaba para obtener metales a partir de sus menas. A medida que se talaban los bosques y disminuía la cantidad de leña disponible, en los comienzos de la Revolución Industrial, el carbón vegetal fue sustituido en la obtención de metales por el coque procedente del carbón. El carbón, que también se empezó a utilizar para propulsar las máquinas de vapor, se fue convirtiendo en la fuente de energía dominante a medida que avanzaba la Revolución Industrial.



  • LA CRISIS ENERGÉTICA


El año 1973 marcó el final de la era del petróleo seguro y barato. En octubre, como resultado de la guerra entre árabes e israelíes, los países árabes productores de petróleo recortaron su producción y embargaron el suministro de crudo a Estados Unidos y los Países Bajos. Aunque el recorte árabe representaba una pérdida de menos del 7% del suministro mundial, provocó el pánico de las compañías petroleras, los consumidores, los operadores del petróleo y algunos gobiernos. Cuando unos pocos países productores comenzaron a subastar parte de su crudo se produjo una puja desenfrenada que alentó a los países de la OPEP, que por entonces eran ya 13, a subir el precio de todo su petróleo a niveles hasta 8 veces superiores a los precios de pocos años antes. El panorama petrolero mundial se calmó gradualmente, ya que la recesión económica mundial provocada por el aumento de los precios del petróleo recortó la demanda de crudo. Entretanto, la mayoría de los gobiernos de la OPEP se hicieron con la propiedad de los campos petrolíferos situados en sus países.
En 1978 comenzó una segunda crisis del petróleo cuando, como resultado de la revolución que acabó destronando al Sha de Irán, la producción y exportación iraní de petróleo cayeron hasta niveles casi nulos. Como Irán había sido un gran exportador, el pánico volvió a cundir entre los consumidores. Una repetición de los acontecimientos de 1973, incluidas las pujas desorbitadas, volvió a provocar la subida de los precios de crudo durante 1979. El estallido de la guerra entre Irán e Irak en 1980 dio un nuevo impulso a los precios del petróleo. A finales de 1980 el precio del crudo era 19 veces superior al de 1970.
Los elevados precios del petróleo volvieron a provocar una recesión económica mundial y dieron un fuerte impulso a la conservación de energía; a medida que se reducía la demanda de petróleo y aumentaba la oferta, el mercado del petróleo se fue debilitando. El crecimiento significativo en la oferta de petróleo procedente de países ajenos a la OPEP, como México, Brasil, Egipto, China, la India o los países del mar del Norte, hizo que los precios del crudo cayeran aún más. En 1989, la producción soviética alcanzó los 11,42 millones de barriles diarios y supuso el 19,2% de la producción mundial de aquel año.
A pesar de que los precios internacionales del petróleo se han mantenido bajos desde 1986, la preocupación por posibles trastornos en el suministro ha seguido siendo el foco de la política energética de los países industrializados. Las subidas a corto plazo que tuvieron lugar tras la invasión iraquí de Kuwait reforzaron esa preocupación. Debido a sus grandes reservas, Oriente Próximo seguirá siendo la principal fuente de petróleo en el futuro previsible.



  • ENERGÍA SOLAR


La energía solar no es una única tecnología energética, sino un término que abarca diversas tecnologías de energías renovables. Su característica común es que, al contrario que el petróleo, el gas, el carbón y las formas actuales de energía nuclear, la energía solar es inagotable. La energía solar se puede dividir en tres grandes grupos: aplicaciones para calefacción y refrigeración, generación de electricidad y producción de combustibles a partir de la biomasa.



  • BIOMASA

Los combustibles derivados de la biomasa abarcan varias formas diferentes, entre ellas los combustibles de alcohol (mencionados antes en este artículo), el estiércol y la leña. La leña y el estiércol siguen siendo combustibles importantes en algunos países en vías de desarrollo, y los elevados precios del petróleo han hecho que los países industrializados se vuelvan a interesar por la leña. Por ejemplo, se calcula que casi la mitad de las viviendas de Vermont (Estados Unidos) se calientan parcialmente con leña. Los científicos están dedicando cada vez más atención a la explotación de plantas energéticas, aunque existe cierta preocupación de que si se recurre a gran escala a la agricultura para obtener energía podrían subir los precios de los alimentos.







lunes, 10 de marzo de 2008

La atmósfera de la Tierra está compuesta de muchos gases. Los más abundantes son el nitrógeno y el oxígeno el resto, menos de una centésima parte, son gases llamados "de invernadero". Algunos de ellos son el dióxido de carbono, el metano y el dióxido de nitrógeno. Cuando la luz solar llega a la Tierra, un poco de esta energía se refleja en las nubes; el resto atraviesa la atmósfera y llega al suelo. Gracias a esta energía, por ejemplo, las plantas pueden crecer y desarrollarse. Pero no toda la energía del Sol es aprovechada en la Tierra; una parte es "devuelta" al espacio. Como la Tierra es mucho más fría que el Sol, no puede devolver la energía en forma de luz y calor. Por eso la envía de una manera diferente, llamada "infrarroja". Un ejemplo de energía infrarroja es el calor que emana de una estufa eléctrica antes de que las barras comiencen a ponerse rojas.
Los gases de invernadero absorben esta energía infrarroja como una esponja, calentando tanto la superficie de la Tierra como el aire que la rodea. Si no existieran los gases de invernadero, el planeta sería, cerca de 30 grados más frío de lo que es ahora. En esas condiciones, probablemente la vida nunca hubiera podido desarrollarse. La temperatura mediana actual es solo 4 ºC superior a la del ultimo periodo glacial, hace 18000 años.
Prácticamente toda la energía que nos llega del Sol está constituida por radiación infrarroja, ultravioleta y luz visible. Mientras que la atmósfera absorbe la radiación infrarroja y ultravioleta, la luz visible llega a la superficie de la Tierra. Una parte muy pequeña de esta energía que nos llega en forma de luz visible es utilizada por las plantas verdes para producir hidratos de carbono, en un proceso químico conocido con el nombre de fotosíntesis.
En la fotosíntesis participa únicamente una cantidad muy pequeña de la energía que nos llega en forma de luz visible. El resto de esta energía es absorbida por la superficie de la Tierra que, a su vez, emite gran parte de ella como radiación infrarroja. Esta radiación infrarroja es absorbida por algunos de los componentes de la atmósfera que, a su vez, la remiten de nuevo hacia la Tierra. Así, se ha estimado que, si no existiera este fenómeno, conocido con el nombre de efecto invernadero, la temperatura de la superficie de la Tierra sería de unos veinte grados bajo cero. Entre los componentes de la atmósfera implicados en este fenómeno, los más importantes son el anhídrido carbónico y el vapor de agua (la humedad), que actúan como un filtro en una dirección, es decir, dejan pasar energía, en forma de luz visible, hacia la Tierra, mientras que no permiten que la Tierra emita energía al espacio exterior en forma de radiación infrarroja.
El horno solar es una alternativa para disminuir el uso de hidrocarburos que sueltan gran cantidad de contaminantes y dañan la capa de ozono, es una fuente alternativa de energía al usar la energía solar para cocinar los alimentos, es de bajo costo, los materiales son muy sencillos de obtener y es muy eficaz pues con una buena tecnología aplicada, buena elaboración y condiciones de uso llega alcanzar grandes cantidades de calor, lo único que nos hace falta es promoverlo en México y todo el mundo pues disminuiría la cantidad de contaminación expulsada al aire y la disminución de quema de combustibles.
VEAMOS COMO FUNCIONA EL HORNO SOLAR.

miércoles, 5 de marzo de 2008

CAPACITACIÓN EN TECNOLOGÍA ALTERNA

Propósito

Formar técnica y ambientalmente a prestadores de servicios y población interesada en el desarrollo y construcción de Tecnología Alterna para el aprovechamiento energético de los recursos naturales, así como la diversificación de las posibilidades laborales.

Objetivos Específicos

Formación Técnica y Ambiental de los participantes.
Fomentar y difundir el desarrollo de Tecnologías Limpias.
Proporcionar Constancias de Capacitación certificada avalados por la SSPYE, STPS, (CONEEVYT-INEPJA), dentro de la modalidad de preparación y capacitación para el trabajo.


CONTENIDOS GENERALES DEL CURSO
(48 horas de capacitación, atendiendo a 15 personas máximo por grupo -matutino y vespertino- de acuerdo a la capacidad de carga de la infraestructura adquirida)

INTRODUCCIÓN

POR QUÉ DEL CURSO
PLAN DE ESTUDIO
DINÁMICA DE CAPACITACIÓN
ACLARACIONES

MÓDULO I
INTRODUCCIÓN A LA EDUCACIÓN AMBIENTAL
ORGANIZACIÓN GRUPAL DE HABILIDADES

MÓDULO II
ENERGIAS

MÓDULO III
SISTEMAS DE CONVERSIÓN DIRECTA DE LA ENERGÍA SOLAR

MÓDULO IV
MANOS A LA OBRA

MÓDULO V
ALTERNATIVAS DE ORGANIZACIÓN SOCIAL
PROYECCIÓN COMERCIAL
APLICACIONES DE CAMPO

- CONTENIDOS TEMÁTICOS DEL CURSO -

MODULO I
INTRODUCCIÓN A LA EDUCACIÓN AMBIENTAL

· Conceptos Básicos de Educación ambiental
· Recurso Agua
· Recurso Aire
· Recurso Suelo
· Residuos Sólidos
· Problemática Ambiental
· Educación Ambiental
· Recorrido Práctico

MODULO II
ENERGÍAS

· Conceptos Básicos de Tecnología Solar
· Introducción a la energía y sus cambios
· Tipos de energía, temperatura y trabajo.
· Aprovechamiento energético.

MÓDULO III
SISTEMAS DE CONVERSIÓN DIRECTA DE LA ENERGÍA SOLAR

· Aprovechamiento Térmico I (climatologías locales)
· Aprovechamiento Térmico II (Tipos y Funcionamiento de colectores planos)
· Aprovechamiento Térmico III (Sol y Arquitectura)
· Principios del fotovoltaje.

MODULO IV
MANOS A LA OBRA

· Aplicación Práctica I (Diagramas, Técnica de corte y soldadura)
· Aplicación Práctica II ( Fabricación y Armado de Componentes)
· Aplicación Práctica III (Instalación Doméstica)


MÓDULO V
PROYECCIÓN COMERCIAL

· Técnica para el estudio de mercado y comercialización
· Legislación ambiental en la materia.
· Introducción a la Organización en Sociedad Productivas.
CARTA DESCRIPTIVA DEL CURSO

MÓDULO
ACTIVIDAD
DURACIÓN
RESPONSABLE
DE CONTENIDOS
I
EDUCACIÓN AMBIENTAL
Bienvenida
Introducción a la Educación Ambiental

3.5

8 horas
Bienvenida SSPYE
Desarrollo de contenidos-Coord. Educ. Ambiental.

Organización Grupal (habilidades Técnicas)

.5
Práctica de Campo
4.0
II
ENERGÍAS
Conceptos Básico

2 horas
Difusión Ambiental
Introducción a la Energía y sus Cambios

Tipos de Energía y sus Cambios.

Aprovechamiento energético.

III
SISTEMAS DE CONVERSIÓN DIRECTA DE LA ENERGÍA SOLAR
Aprovechamiento Térmico I (Climatología Local)

2 horas
Difusión Ambiental
Aprovechamiento Térmico II (Fabricación y Armado de Componentes)

Aprovechamiento Térmico III (Sol y Arquitectura)

Principios del Fotovoltaje.

IV
MANOS A LA OBRA
Aplicación Práctica I (Diagramas, Corte y Soldadura)
10
34 horas
Difusión Ambiental
Aplicación Práctica II (Fabricación y Armado de Componentes)
12
Aplicación Práctica III (Diagramas de Instalación)
12
VI
PROYECCIÓN COMERCIAL
Legislación Ambiental en materia energética.
1.0
4 horas
STPS
SEDECE
COESPO
PROFEPA

Introducción a la Organización en Sociedad Productiva.
1.0
Introducción al estudio de mercado y comercialización.
1.0
Organización Social Alterna
1.0